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ABSTRACT

This report discusses the possibility of 3xtracting sleep information

from heart rate data. The recognition of sleep stages or even the ability to

differerntate sleep from wakefulness using heart rate information alone rather

than the conventional EEG measures could expend the scope of sleep studies.

In many situations where it is desirable to evaluate wakefulness and sleep,

EEG electrodes become unreliable after a few days and the time bandwidth

requirements of recording and transmitting the EEG are excessive.

Eight hours ef sleep EEG, EOG and electrocardiograms were recorded on

FM magnetic tape for two nights. The method of data collection and sleep

scoring of the EEG was reported ia detail by Lessard, Ford and Hughes of

the USAF School of Aerospace Medicine (14). Copies of the FM magnetic tapes

containing sleep data for ten subjects were supplied to The University of Texas

Bia-Medical Engineering Labe ratory by the U. S. Air Force School of Aerospace

Medicine.

Double differentiation of the filtered electrocardiogram and threshold logic

units were used to detect the peak of each R-wave. The time in milliseconds

between heart beats was written on digital magnetic tape. The data were

grouped into records containing 128 consecutive beat-to-beat intervals and

eleven descriptors were computed for each record. These descriptors for each

2record were the mean value X, the sample variance S and the nine-intsrvak

1
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histogram of the beat-to-beat R-R intervals. We represented each R-R inter-

val as X and the mean value and standard deviation of the 128 R-R Intervals

as X and S, respectively; then the standardized valu !or the ithheart beat was

xl-x
zi ()

S

The distribution of Z scores had a mean value of zero and standard deviation

of one. Histogram intervals were one standard deviation wide and the number

of standardized scores falling in each of the nine intervals were used as the

value of the histogram descriptors. Each group of 128 heart intervals had a

different mean value. X and sample standard deviation, S.

The outer intervals of the histogram extended from -As to -1-3/4 and + 1-3/4

to4.

Analysis of v3riance was used to determine descriptor signiff.cance for

each subject. This procedure tested the null hypothesis for each descriptor.

f n other words, what was the probability that a descriptor mean value for awake

and the five stages of sleep were equal? Our program used an F-test to com-

pute the probability that the -mean values of the descriptors for each stage of

sleep were equal. The hypothesis was rejected if P < .01.

The discrlminant in*-vais procedure described by Rao (17) and popularized

by Cooley and Lohnea (7) was used to sleep stage classify heart rate data.

Approximately one-half of the first recorded night of sleep for each individual

iii



was used as a training set in the discriminant analysis procedures. Once the

training set had been obtained bo)th nights of sleep for the individual were

sleep stage classified into awake and stage 1, 2, 3, 4, and REI, sleep.

Accuracy of the procedure was determined in terms of percent correct classifi-

cations, correlation coefficient of the computerized sieep pattern with respect

to the EEG hand scored pattern and an empirically derived cost function.

The results of this study suggest that for a single night of sleep a reason-

able accuracy of sleep stage classification is possible. However the variability

in heart rate from night-to-night for any one individu3l produces unacceptably

poor classificathin results on the second night.
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INTRODUCTION

Extended periods of sleep deprivation commonly produces a decrease of

performance capabilities at skilled tasks (4,10,13,18) in addition to un-

healthy changes in personality profiles (22, 23). Indeed, hallucinations

have been observed in laboratory experiments (9). Kleitman (12) reports

that "among the effects of prolonged wakefulness are irritability, and mental

disorganization, leadtng to daydTeaming and automatic behavior, occasionally

bordering on temporary insanity." Decreased pei'ormance prevents a person

from meeting the requirements of many military situations which require maxi-

mal alertness and performance by the on-duty personnel. Berry (4) reports

that fatigue due to inadequate rest interferred with the ability of the astrnauts

to perform tasks in the Apollo VII and VIII missions,. Usually the state of alert-

ness and performance for an individual is associated with the amount of rest

and sleep he has obtained.

Unfortunately the t :chnical difficulties in obtaining sleep information

have impeded sleep research outside the laboratory. Classically sleep is

evaluated from electroencephalographic data (EEG). The instability of -be EEG

electrodes over extended periods of time and the lack of an automated process

fcr evaluation of the EEG has discouraged meaningful research of sleep In

military situations.

One possible solution to this prcbleL; would be the development of an alternate

source of sleep information. The sorce we consider in this report is beat-to-

- I.
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beat heart rate. This electrophysiological measurement is more stable than

the EEG over long periods of time and there is evidence that average heart

rate is influenced by sleep. It is the intent of this ,eport to determine the

feasibility of using instantaneous heart rate in an automated process as an

indicator of the sleep-wakefulness cycle.

Statement of Problem

Pilots in flight are not alwa'.s able to report accurately their physical

condition, particularly wtt .:espect to drowsiness-wakefulness, which

affects alertness and operational capability. A simple objective measure of

this condition under operational conditions is desirable. Any solution must

= keep the sensory system sinrple and must keep the req;'ired transmission band-

width small. One possibility is to derive this wakefulness information from

beat-to-beat heart rate data, transmit the heart rate data to ground stations,

and use computer analysis to determine sleep stage from heart rate derlved

measures.

In a previoas report from The University of Texas at Austin (21) we

described the computation of severdl different measures of beat-to-beat heart

rate. We also computed the possible utility of each of these measurements

to a sleep stage classif.cation program. This report 6xamines computer classi-

fication of sleep stages utilizing the measures described in our previous report.
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Review of Literature

Since the classical work of Dement and Kle~tman (8), the depth and dura-

tion of sleep has been determ.ned by examinat•on of electroencephalographic

data. However, the reccrding of a full night of sleep EEG on a strip chart

recorder results in a bulky set of data. Further the visual interpretation of

thete data is a time-consuming task since an individual must manually scan

up to 1,000 feet of strip chart record! Trained personnel, using well-docu-

mented criteria to score tht sleep records, have not prodsced a consistent

procedure for scoring a night of sleep with a guaranteed accu:acy better

than 90% (24). Monroe (16) reports inter-rater consistency in scoring sleep

records by different specialists to be only 65 percent. Many inaccuracies

may be due to the marked degree of subjectivity that must be used in

visually scanning lengthy records. In some situations zuch as space flight.

Dandwidth, weight considerations and poor electrode techniques suggest

that an alternate signal to the EEG is needed.

Coupling between sleep activity in the brain and autonomic nervous

system motor activity has been documented by many investigators (5,6,11, 15,19).

Snyder (20) reported significant changes (P < .05) in average levels of

blood pressures, respiration and heart rate between stages 1 -REM and

stage 2. Data were recorded from twelve subjects for a total of thirty nights.

There was a 6% average increase in heart rate, a 7% average increase in res-

piratory rate and a 4% average increase in systolic blood pressure from stage 2

-A
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to stage 1-REM. Significant changes (P < d.,j Jci not occur between stage 2

and combined stages 3 and 4.

Since the depth of sleep typically produces measurable changes in

autonomic bodily iunctions.. we anticipated that autonornic actifty could

be used to describe depth of sleep. Of the organs under the control of the

-utonomic nervous system, the heart has one of the richest supplies of both

adrenergic and choliner0.c nerva- endings. The heart clso produces an ele'--

Lrical signal that is easy to measore (the electrocardiogram). Most of the

information supplied to the heart by the autonomic nervous system is reflected

In the instantaneous R to R interval (the beat-by-beat heart rate). Only a

small portion of the autonomic information supplied to the heart is reflected

in the eiec-trocardiographic wave shar,-. Thus the beat-by-beat heart rate

should be a useful measure in deternining sleep stages.

In a study by Brooks ( 6) six individuals (three husbands and wives)

were observed for fifty nights of sleep, Brooks found a 10% average increase

in heart rate when the depth of sleep lessened by on.- stage from stages 4 to 3

ot 3 to 2. He also found a 13.7% average increase in heart rate with two stage

lessening of sleep (4 to 2 and 3 to 1). A 21.5% average increase irs heart rate

occurred when sleep level lightened by three stages (from 4 to I or from stage 3

to wakefulness). Brooks concluded that sleep depth was probably reflected

more in changes in cardiac cycle length (i.e. instantaneous R to R interval or

beat-by-beat heart rate) than in the average heart rate values he used.

yau~-- -
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Review of Our Past Work

In our previous work, analysis of variance was applied to several types

of measurements which were obtained from instantaneous heart rate data.

Significant measures of sample mean value, sample standard deviation and

histogram were found for both the instantaneous heart rate and the beat-by-

beat interval. Table I graphically illustrates the level of significance of

each of these measu:es for each subject fer the interval measures. The

level cf significance is measured with the F test and indicates the level of

rejection of the hypotheses oi equal mean value for each stage of sleep for

the measure under consideration.

Fourier analysis of the instantaneous heart rAte data produced a large

number of variables which were signifir.ant at Lh. .001 levei. All measures

were made on ensembles of 128 heart beat intervals (the number of seconds

between each heart beat). A detailed presentation of the results of this work

is available (21). At the time we wrote this earlier report, It was recognized

that the analysis of variance test did not define the level of separation a

variable might accomplish in multiple class data. However, variables that

are significant at the .001 level can frequently provide a reasonable starting

point in the search for reliable measures to be used for classification.

Rationale of Present App~roach

The data of all test subjects presented to The University of Texas was

classiiWed into one of six st ites (or levels) of consciousness. These were
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awake, stage one through four sleep, and stage REM. While these categories

or sta:es of consciousness have been considered by many to be standard, they

are based primarily on EEG criteria. Physiologically these stages probably

have little direct meaning.

Because of the difficulty of computer classifying six categories, we

attempted to simplify the problem. The deep sleep stages 3 and 4 were com-

bined into a single stage and stage 1 and REM we: grouped together. There-

fore the number of consciousness levels was reduced from 6 to 4.

Stac.e 1 and REM were combined because we felt there was ,attle ,ieaningiui

ditference between the two sleep stages. Sleep stage REM is usually scoired

whenever Stage 1 EEG is found after the Ist sleep cycle. yin other words, the

only time Stage 1 was scored waz during the fl-st sleep cycle; after that all

Stage 1 EEG was typically scored es REM. Agnew (2) concurred in this opinicn.

Similarly, we were unable to find any reason why Stages 3 and 4 should nct

be combined. Typi',ally in the evaluation of sleep effectiveness, stages 3 :-Id

4 are c ;mbined (2).

Once the dimensionality of our problem was reduced to four, we suught

to develop a "cost" function to evaluate classification procedure. This was

necessary since it is typizally difficult for humans to compare error funct."ons

of four variables. The weightings suggested by Agnew (2) stress the importance

of differentiating between awake and sleep.

A
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A much smaller cost is assigned for making "one" stage errors during sleep.

Table 2 represents the empii-ically-derivee cost matrix.

TABLE 2

The cost of classifying stage - - -

AWakej 1, REMI ,

.. s Awake. 0 1 { 1 1
st'c'e i

1 0 1/4 1/2I , z, , I ______

t I
24 1 ,1 1/4~ 0 1

3,4 1 1/2 /4 0

A cost per classification is obtained when this cost matri:: is multiplied by

a sleep result matrix (or an element-by-element basis - not as matrix multi-

plication is typically performed) and the elements of this product matrix are

summed then divided by the total number of points considered in the classi-

ficaticn matrix.

Note that the greatest cost of errors occurs when an awekc epoch is

classified as sleep, or when any sleep epoch is classified as awake. No

cos t It accrued for a correct answer and weightings of one-half are charged

for missing the sleep stage by more than one level. This single number cost

value permits effective comparison of the various variables used in the classi-

fication procedure.
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DI SCRI MINANT ANALYSIS

The optimum procedure for classifying a sample of data with d-measures

is achieved using the Bayes discriminant fun-.tion which requires knowledge

(or estimates) of the&. riori probability of occurrence of each category and

the d-dimensional Joint density function of the measures for each category.

A non-op'lmel, but computationally feasible, approach to classific3tion is

Multiple Discriminant Analysis. This analysis includes a linear transformation

to reduce the dimensionality of the problem and a Bayes classifier as illus-

trated in Figure 1

Data X Discrirminant y Bayes Classifiel ClassificatiorSanalysis class ., •
d-dimensional separating I
measure vector transform

CLASSIFICATION PROCEDURE

Figure I

Oftex information from an experintent can be divided into a sequence of con-

secutive epochs. For each epoch a set of descriptors or measures is computed

that may contain sufficient information for the classification of the epoch.

I is convenient to picture the set of lata for each epoch as a point in an

d-dimensional space where one point describes each epoch. Further assume

the classification associated with each of these epochs is !:nown; where

_ -
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i is equal to 1, 2, 3,...R and R is the total number of classes.

Another important representation of the d deicriptors is that of a

d-dimensionai vector ". Each epoch is represented by a different veetor.

Thus we have the picture of points in a d-dimensional space and their corres-

ponding vector representation X.

The linear transformation of Figure 1 maximizes the dJstance between

centroids of each category in the Y space while holding the oueiall variance

constant. The transformation reduces the dimensionality to the minimum

number required to compartmentize the space for the categories under con-

sideration. That is, the dimensionality of Y is the minimum of either (a) dimen-

sions of X, or (b) the number of categories minus one.

The discriminant analysis procedure assumes the joint density function

of Y for each category iF ncrmally distributed. Thus, conditional probability

of group occu-rence may be computed according to:

f.
P(i/Y) - ii 1= i,2,...R

R
fJ=l

where

n= is the a prio probability of occurrence of class J

f is the joint density function for class J evaluated at Y.

IQ

F ejYJIZ (-~~
j (2•.)d/2 I e S1
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j is the centroid of class j in the Y space

E is the covariance matrix of Y for class 3

Application to Heart Rate Data

The heart rate data was divided into a seauent a o. 12.8 beat--o-bazt

epochs. For each epoch heart ;ate descriptors were computed that were antici-

pated to contain sufficient information for tha determination of sleep stage

during that epoch.

S:-A
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PROCEDURE

Dat Acwuisition

Electroencephalographic and electrocardiographic data for this stidy

were collected on FM magnetic tape at The University of Florida Sleep Labo-

ratory by W. H. Agnew, Jr. under Air Force Contract No. F41609-68-C-003.

Ten subjects at The University of Florida were selected on the basis of good

physical and mental health as determined by medical examinatiun and the

Minnesota Multiphasic Personality Inventory. Each subject spent at least

three consecutive nights in the laboratory. The first night was used to con-

dition the subjects to the laboratory in order to avoid first night effects ( 1).

Eight hours of sleep EEG, EOG, and electrocardiograms were recorded on FM

magnetic tape for two nights. The method of data collection and sleep scoring

of the EEG was reported in detail by Les.ard, Ford and Hughes of the USAF

School of Aerospace Medic~ne (14). Copies of the FM magnetic tapes containing

the sleep data were supplied to The University of Texas Bio-Medical. Engineering

Laboratory by the U. S. Air Force School of Aerospace Medicine.

Data Reduction

Double differentiation of the filtered electrocardiogram and threshold logic

units were used to detect the peak of each R-wave. The time in milliseconds

between heart beats was written on digital magnetic tape. The data were

grouped into records containing 128 consecutive beat-to-beat intervals.

IA
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A number of descriptors were then computed for each record. Eleven of

2
the descriptors were the mean value X, the sample variance S , and the nine

intervals histogram of standardized instantaneous beat-to-beat intervals for

each record. Standardized beat-to-beat intervals were calculated using

equation (I). .
X X

zi s (1)

The R-R interval for each beat was Xi and the mean value and standard devi-

ation of the 128 R-R intervals was X and S, respectively. The standardized

instantaneous value for the ith heart beat Is Zi. The distribution of Z scores

calculated in this way always has a mean value of zero arid standard deviation

of one. Other measurements for the 128 R-R intervals included eleven instan-

taneous heart rate measures analagous to the interval measures and 64 Fourier

Transform measures.

Histogram intervals of one-half standard deviation were selected as

illustrated in Table 3. The number of standardized scores falling in each

of the nine intervals were used as tht value of the histogram descriptors.

Each group of 128 heart intervals had a different r.vean value, X and sample

standard deviation, S. The outer intervals of the histogram extended from

-eto - 1-3/4 and + 1-3/4 to +.

Analysis of variance (7,25) was used to determine measure significance for

each subject. This procedure tested the null. hypothesis for each measure.

In other words, what is the probability that a measure's mean value is the

I
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HEART INTERVAL MEASURES

Measures Description of the Measure

i Sample Mean Value

2 Sample Stzndard Deviation
Histograrr Measures (1/2 a Intervals)

KE 3 z < - 1 3/4 a

4 -1 3/4 a < < - 1 1/4a

5 -I 1/4 a < r < - 3/4a

6 - 3/4a < P- <- 1/4 a

7 - 1/4a < 2 <- 1/4ca

8 1/4a < z < 3/4a

9 3/4 o < e < 1 1/4 a

10 1 1/4 a < z < 1 3/4 a

II 3/4 a < e•

-rA
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same for awake and the five stages of sleep. Our prc-jram used an F-test to

compute the probability that the mean values of the descriptors for each stage

of sleep were equal. The hypothesis was rejected if P < .01. The most sig-

nificant measures were selected to be used to train the discriminant function.

Detailed results of the analysis of variance procedure are in ou- previous

report (21).

Discriminant Analysis

After descriptors for each epoch of 128 heart beats had been computed,

computer classification was performed in the following manner.

(1) Approximately 50% of the first night's epochs were selected

as training data. The exact number of epochs corresponded to the larger of

either 25% of that class's total number of epochs for an individual's two nights

of sleep or ten epochs. Ten epochs represented an arbitrary minimum number

-f samples for estimation of the d-dimensional centroid and covariance matrix

for each class. If the first night of sleep did not contain the required number

of epochs then epochs wore selected from the second night of sleep. Each

epoch contained a complete set of heart rate, lnterjal and Fourier transform

descriptors.

(2) Selected subsets of descriptors from the training set were entered

into the discriminant analysis program which evaluated the class separating

linear transformation X -. Y and computed mean values and covariance matrices

used !n the Baysean conditional probability estimates,
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(3) The accuracy of selected subset of descriptors was pretested by

computing the conditional probability P(i/X) for each epoch in the training set

and comparing the results to the EEG scored sleep stages.

(4; The two nights of recorded sleep then were classified by trans-

forming the seiected subset of descriptors one epoch at a time and computing

the -onditicaial probability of classification for each epoch. The computer

classifications were recorded on magnetic tape for display and accuracy con-

putations.

(5) The comnuter classified sleep patterns were plotted on a

CalComp plotter and the accuracy was determined by

W(•) presentation of an error table and computation

of the percent correctness

(b) computation of the correlation coefficient between the

computer scored and EEG scored sleep records

(c) pooling zhe data into four classes (i) awake, (ii) 1,

1-REM, (iii) 2, and (iv) 3, 4 and evaluating the average

cost per epoch based upoi; .ost function presented in

Table 2, page 7.

A alow graph of the analysis procedure is shown in Figure 2.

i
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RESULTS

The results of this study are presented in both tnbular and graphic

form. Tables 4 through 2' present the tabular data. The even-numbered

tables (4, 6, 8, 10, etc.) contain the results of classifying the first night

of recorded sleep and the odd-numbered tables contain the results for the

second night of recorded sleep. In most cases, the discriminant algorithm

was trained on data obtained from the first night of recorded sleep. Results

are presented for using both balanced (all classes equally likely) and un-

balanced (actual frequency of occurrence of each category) a priori prob-

abilities. For the specified sets of descriptors the tables contain

(1) Accuracy for both six and four category classifications

(2) Average cost per epoch for the night

(3) Correlation coetficient between EEG hand-scored sleep

heart rate computer-scored sleep.

In these tables, Variable 1 is the mean beat-to-beat interval of the

epoch, Variable 2 is the sample variance of each epoch, and Variable 3

through 11 are the interval bistogram values. Table 3, summarizes

the relation between variable number and physical beat-to-beat interval

measures. (For any fnoch the sum of the histogram measuies is 128).

The variables noted in the tables as "11 Fourier" represent 11 of the

best Fourier variables selected by analysis of variance (21). The measure

set "Histogram and Four" combines the 8 Interval Histogram measures with the

-_•-
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11 Fourier measures.

The conditional probabilities of each sleep stage were calculated

assuming each sleep stage to be equally likely (balanced) an~d using a _riori

probabilities actually based on the individual subject. The a priori prob-

abilities of each of the sleep levels for each subject is presented in Table 24.

Five measures of merit of the classification procedure are presented for

each combination of measures used and for each set of a Rripri probabilities.

The percent classification of the first half and the second half of each night

using six sleep categories are presented. In addition, the percent correct

classification using four cat.egories is presented.. The weighted cost per

epic is listed as a measure of machine scoring effectiveness. The corre-

lation coefficient given is a rough indication of the sdmeness in shape between

the hand-scored and machine-scored data.

Tables 5 through 23 and all odd-numbered tables in between represent

the results of discriminant classification using a discriminant function trained

on the first night of sleep and used to classify the second night of sleep. The

same variables and a priori probabilities presented in the preceding even-

numbered table are used in the odd-numbered table. The measures of merit

are the same as those used for the preceding even-numbered tables. Occa-

sionally when insufficient samples were available in the first night of data, a

few samples had to be obtained from the second night of sleep to train tha dis-

criminant function.
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TABLE 24

PROBABILITY OF OCCURRENCE, P

A 1 2 3 4 REM

Safer .237 .072 .328 .072 .072 .208

Schmidt .090 .090 .423 .090 .090 .208

Farrington .087 .087 .434 .087 .087 .217

Chinoy .088 .088 .377 .079 .088 .281

Gildersleeve .082 .082 .418 .082 .098 .237

Moss .095 .JI03 .465 .086 .00C 250

Verick .076 .076 .481 .076 .091 •8

Nordyke .088 .088 .368 .088 .158 .210

Phillips .109 .099 .446 .099 .099 .148

Padula .075 .090 .466 .075 .075 .218

Number of Epochs of Stage I
P, in Trrl.ning Set

Total Number of

Trat.ing Epochs

! = Awake, 1, 2, 3. 4, and REM

= Awake, 2
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Tables 25, 26, 27 and 28 represent examples of good results using the

discriminant function procedure.

Tables 25 and 26 represent results obtained from an attempt to classify

the first and second nights of subject Chinoy's sleep with variabies 1,2,3,5,7,

9 and 11. A graphical representation of his sleep pattern for the two nights

based on EEG hand-scored records is presented in Figures 3 and 4. The corres-

ponding heart rate machine scored sleep patterns are shown in Figures 5 and 6.

Tables 27 and 28 give the details of an analysis of the same data using

a combined histogram Fourier analysis measure set. The computer-generated

classification based on these measures is presented in Figure 7 (first night of

recorded sleep) and Figure 8 (second night of recorded sleep).

) -~
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TABLE 25

EXAMPLE OF CLASSIFICATION RESULTS FOh FIRST NIGHT OF RECORDED SLEEP

Subject: Chinoy
Variables: 1,2,3,5,7,9,11-
Night: 3 (first recorded night of sleep)
A pftori probability: Actual frequency of occurreice

This stage of sleep ..........

. Awake 1 2 3 4 REM
was
classified as Awake 4 0 2 0 0 2

1 1 8 2 1 0 4

2 0 1 66 3 12 6

3 0 0 6 1 0 0

4 1 0 2 0 12 0

REM 1 4 5 0 0 56

REDUCED SLEEP MATRIX

This stage of sleep ............

Awake (!,REM) 2 (3,4)

was Awake 4 2 2 0
classified (1,REM) 2 72 7 1

2 0 7 66 15

(3,4) 1 0 8 13
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TABLE 26

EXAMPLE OF CLASSIFICATION RESULTS FOR SECOND NIGHT OF RECORDED SLELP

Subject: Chinoy
Variables: 1,2,3,5,7,9,11
Night: 4 (second recorded night of sleep)
A priori probability: Actual frequency of occurrence

This stage of sleep ..............

* Awake 1 2 3 4 REM
was
classified Awake 5 0 1 0 0 5
as 1 1 3 0 0 10

2 0 2 7,9 3 14 16

3 1 1 4 1 2 3

4 0 0 7 0 0 0

REM 0 1 1 0 0 27

REDUCED SLEEP MATHY.

This stage of sleep .............

Awake (1, REM) 2 (3,4)

was Awake 5 5 1 0
classified (1 ,REM) 1 39 4 0
as

2 0 18 78 17

(3,4) 1 4 1i 3
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TABLE 27

EXAMPLE OF CLASSIFICATION RESULTS FOR FIRST NIGHT OF RECORDED SLEEP

Subject: Chinoy
Variables: 1, 4-11 and eleven rourie.'
Night: 3
A priori probability: Actual frequenc:- of occurrence

This stage of sleep ............

. Awake 1 2 3 4 REM
was
classified Awake 4 2 2 1 0 1
as 1 0 3 5 0 0 3

2 0 4 55 3 14 6

3 0 0 3 1 1 0

4 1 0 5 0 9 0

REM 2 4 5 0 0 58

REDUCED SLEEP MATRIX

This stage of sleep .............

. Awake (1, REM) 2 (3,4)

was Awake 4 3 2 1
classified (1 ,REM) 2 68 10 0
as

2 0 10 55 17

(3,4) 1 0 8 11

-c - - -
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TABLE 28

EXAMPLE OF CLASSIFICATION RESULTS FOR SECOND NIGHT OF RECORDED SLEEP

Subject: Chinoy
Variables: 1, 4-11 and eleven Fourier
Night: 4
A priori probability: Actual frequency of occurrence

This stage of sleep ............... .

Awake 1 2 3 4 REM

was Awake 0 0 1 1 0 3
classified 1 1 1 9 0 1 11
as

2 1 4 74 3 12 17

3 0 0 2 0 2 0

4 0 0 6 0 1 0

REM 0 0 1 0 0 30

REDUCED SLEEP MATRIX

This stage of sleep .................

Awake (1,REM) 2 (3,4)

was Awake 0 3 1 1
classified
as (1,REM) 1 42 10 1

2 1 21 74 15

(3,4) 0 Q 8 3
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DISCUSSION

The overall results of a classification by discriminant analysis

were somewhat discouraging when the second night of data was considered.

As might be expected the unbalanced a pZroi probabilities consistently

produced better classification results.

Much of the inability of this algorithm to correctly classify sleep

is rooted in the fact that there was considerable amount of Intra-subject

variation and even intra-night variation in the beat-to-beat heart rate.

Aldredge, et al (3) has investigated the intrd-subject and intra-c-ycle vari-

ation in the mean heart rate and sample standard deviation of the data used

for this investigation. They examined the possibility that the mean values

of average heart rate and sample standard deviation might not be consistent

throughout a night of sleer or between two nights of sleep. Undesired

variations in the average and sample standard deviation In heart rate during

a night of sleep were determined by testing the following hypothesis wiih

analysis of variances for each subject-

H0 : The -mean values )f a random variable X for each0

stage I are equal for ýl cycles of sleep during

a single night of sleep.

(X is either equal average heart rate or sample standard

deviation, and I represents either (I,REMJ, 2, or (3,4)).

- - - ~ -.----- '----
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Aldredge, et al, concluded that for a single night of sleep the

above hypothesis could be rejected in most of the cases at .0001 sig-

nificance level when X represented the average heart rate and I was either

equal to (1,REM) or 2 or (3,4). However, the hypothesis could not be

rejected at the . 0001 level for any stage of sleep when the sample stan-

dard deviation was tested. A close inspection of the intr-cycle variation

in average heart rate saggested that the heart rate during a cycle of steep

was influenced by the average REM heart rate at the onset of the cycle.

The null hypothesis of equal means for average heart rate values of stage

REM and of stage 2 for any given cycle was rejected in favor of the alter-

nate hypothesis that the mean for REM was greater than the mean for stage

2 at the . 05 significance level. Also the alternate hypothesis was accepted

when the mean values of mean averaged heart rate values of stage REM are

greater than that of combined stage REM and combined stages 3 and 4 were

compared with a one tailed t-test at a 5% significance level. A third null

hypothesis which stated that the mean averaged heart rate values of stage 2

were equal to that of combined stages 3 and 4 could not be rejected.

The pelformance of the Fourier measure and their ability to represent

sleep information was disappointing. With the except -n of Messrs, Paduia

* and Moss, the Fourier measures alone did not improve the cost of sleep

scoring. When combined with the histogram measures, five of the sub-

jects had a slight decrease in cost of classification. Table 29 Illu-

strates the relative cost of of using histogram measures, Fourier measures
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TABLE 29

COST FOR VARIOUS MtASUFES
(Second Night)

Htstogram Fourier Combined Fourier and
Subiect Measures Measures Histcgram Measures

Chinoy .12 .25 11

Safer .39 .50 .40

Gildersleeve .15 .20 .17

Padula .50 .27 .48

Moss .35 .19 .30

Phillips .21 .23 .20

Schmidt .25 .31 .27

Farrington .14 .25 .13

-4
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alone and the combined histogiam and Fourier measures.

Examination of the summary tables indicated that all nine histograms

were never used in the same covaraince matrix since the linear dependence

of one histogram variable on the other histogram variables produces a sin-

gular matrix which is non-invertible.

Table 30 considers that advantages of using balanced and unbalanced

aori probabilities. In terms of our empirically-derived cost function, the

non-balanced a Priori probabilities are quite similar. If percent of accuracy

diagnosed sleep epochs is the criterion, the nun-balanced a prioi probabilities

are decidedly superior.

CONCLUSIONS

Result of this research indicates that it is possible to classify heart

rate patterns into sleep stages. However, the results are not overwhelming,

in spite of the fact that the analysis of variance Indicates an optimistic possi-

bility of sleep stage classification ability of these measures. Much of the

difficulty experienced by this algorithm can be attributed to Intra-night, intra-

subject variations in mean value as the 90-minutes slaep cycles progress through-'

out the night.

Our empirically derived cost function proved to be a useful measure of

the effectiveness of our sleep classification algorithn,. We contend that any

measure of merit used to evaluate a device or procedure should of necessity be

closely related to the original problem, in this case the study of sleeping patterns.
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- TABLE 30

EFFECT OF USING A PRIORI PROBABILITIES
IN CLASSIFICATION ALGORITHM

Classification Criteria Number of Classification r.uns

Lowest Cost Using Night 1 Night 2

A Priori Probability 14 14

Balanced Probabilities 0 2
(likelihood ratio)

No Significant Difference 4 4
Between Above Methods

•II Highest Correlation Using

A Priori Probability 8 4

Likelihood Ratio 7 7

No Difference 4 8

III Percent Accuracy Using

A Priori Probability 15 13

Likelihood Ratio 0 a

No Difference 3 5

A
41
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We also concude that if it were possible to normalized the heart rate

data so that the inter (90 minutes) sleep cycle variation in mean were less,

then better results would have been obtained. We suggest that if an alternate

algorithm could be developed to deteimine the beginning of each 90 minute

sleep cycle, then this algorithm would be able to accurately classify the

data into sleep stages.

Also, if it were possible to extract respiration information from ampli-

tude variations in the QRS complex, this additional variable might improve the

accuracy of the algorithm.
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APPENDIX 60

Modit :d Discriminant Analysis.

The original discriminant analysis program is that of Dr. Donald

J. Veldman of The University of Texas at Austin, Department of Educational

Psychology and is well, documented in his book Fortran Programming for the

Behavioral Sciences. In addition to his discriminant analysis program, we

have found it helpful to use some of the minor subroutines included in his

work; namely PRTS and PCDS, which are efficient print and punch sub-

routines and CORS which computes means, sigmas, and intercorrelations.

The discriminant program determines a transformation matrix cf data from

known groups (sleep stages) which maximizes the distance between centroid

while holding the overall distance between points of data constant. The

dimensionality of the new space is the minimum of (1) the number of

groups minus one, or (2) the number of variables. Basically discriminant

analysis is a transformation from the data space to a new reduced measure

space.

the classification program of Cooley and Lohnes requires not only

the D-WTS matrix and centroids, but the covariance matrix at each group

The modifications of the diseriminant analysis program for computing the

covariance matrices are described in the following paragraphs.

In loop 35 of the program original SDSCRIM variable sums and

cross products are accumulated fcr all samples of the variables (i. e. all

data pooled regardless of group classificatlon). After storing the sum of
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61

the score for each group in S and the sum of the cross products in A, a

"within group matrix" is computed and added to W. It is this "within

group matrix" for each group which we desire to use to calculate the dis-

persion matrix (i. e. covariance matrix) for each group. We wish to save

that matrix for each group before it is added with those of the other groups

into matrix W. This is done in the modified version called JDSCRIM in

line c by saving matrix B in CC which will be added in to W in statement

34. The triangular matrix we wish is now available in B(I.J.); we need to

divide it again by C(M) (statement d] and fill in the portion below the

diagonal [statement el. If we wish to calculate and punch the dispersion

matrix for each group a minus one is placed in cc 24-25 of the control card.

The matrix B for each group is written onto scratch tape 1 in loop 33. After

the D-WTS are calculated (through statement 60) we have the items necessary

for calculating the reduced space dispersion matrices which will be done in

the subroutine DMG, called after statement 60.



PROGRAM JD!SC CINPUTOUTPUTPUNCHTAPEITAPE2)
CALL, JDSCRIM
CALL. EXIT S END
SUBROUTINE JDSCRIM

ODIMENSION A(70#70)t W(70o7O)* C(70*70),; S(70#25?o T(7O)o
I V(70)# X(70)# Y(70). Z(70), 0c70)# G(25)& XF(16)# KH(15)
DhtENSION B(70s70)oCC(70o70)
NI 9 70 * N2 a 25

5 CALL. CCOS (KF# NV, NO* KW* KT, KEY)

IF(XEY*E!;.ll REWIND I :rN SS

CAL 25PU Me 1,NoVsNV
DO3to ) a 000
DO015 4 a IsNV
A(Isj1 * 0.0
D0 30 Is *00

IF (XT sOT. 0) RWRITD 2t I)
00 30 M w 1,NV

DO 251 Is1NV

CCIoj) 9 000) (1J

25(Atj) 0 0#04/GM

CAL INPUT) * (I.4) X# NCC H*(00s )NV
IF.M B*0 RT (KC9).~ IO (XO~ J35oN-
DO 30 j aI1NV

33 am WRITE +~ (BIJ)J3N)

DO 30 K a 1,NV
T0 (J*) I SUM(S, *I NG, N) * TNK

00 34 ISLAYN
004 34 * 3,NV
C(Ijj) a C(I#4) /+T A T*J) *T

C(4,I)) S*s~ C&M /G(M)
AC(Io4)g B (Is4) TN*(,4
si4,I) 0 A(IO4)/GM

34 Wtl~j) 0 W(IlqJ)+ C*J

DF 55~N~w GO TO 35
D 09 33 IvNV

33WRTE(i S(*62J*#V



50 X(J) *W(I*J)
DO 5sSja loNv

55 WUJ) 4 SCPF(X, As Is Jo NV, NI)
NF a MINOCNO 1e Is V)
CALL ACYS (NV# NV, o0.0 We A* V. Xs Yo Z* NI)

E s / * S0RT(V(~J))
DO a I I*NV

60A(,) AI~.)IF (KW oEQo 1) CA4L PCDS CAP NV. NFo 51.4 WTS, Ni)

IF (KW .Ego 1) CALL PRYS (As NV* NV, 5140 WTSP Ni)
IP(KEY*CQ.,i)CALL DMO(A*NVANF&NGNi)

65 X(I) 9 SORT(C(li.))
CALL AXBS Co, A, We NV# NV, NV# NJ)
D8 70 I a lNF

70 Y(I) *SQRT(SCPF(As We I# Is NV, NI))
DO 75 1 jj1NV

XLa10

SS a SORTt(VN**2 * GM*02 a4.0) V*2+G024So)
VY 0 XL*( 190 / SS)
FA PVN * M

FO ((TN - 1o01 a (VN *ON) /2.0) # SS a, (VN 4o GM * 2@0) No~.

P a PRBF(FA, VS. F)
* PRINT 851 XL, VA. FBe F, P

85OFeRMAT U/ISM51 WILKS LAMBDA mF1093 // 7W4 DoV. as FS*O*
1414 AND. F7*0 l// IO sVRATIe as F8.3, SXe 314P as F704)
OF *vN~ ON
CC Y N *OF /2.0
D8 90 1 * 1NF
CS 4 CC *ALeG(iSO 4 V(I)
OF 0 OF o 290
P a PRBFCDF, ioooso, CS / OF)

90 PRINT 95s Is XCIl, Cs, OF, P
95OFeRMAT (/ 5HORe@Tl 12, 710.2, j14H PCTv VARIANCE 1

113H4 CH191SQUARE to VIO.3e 5X* 6140.7. se 75.0, 5X* U1P so F7#4)
DO 100 1 v leNV
lU) 0 T(:) * TN

100 S(Isj? I SC(e0J) / ONJ)
CALL AXBS (So A, We aNCv NI'. NV, Ni)
CALL PRTS !We NO* NWe SMCENT., NO)
CALL PCDS (We NO, NF. 5HCEN?., Ni)
CALL PRTS (CC NV, NV. 6I4CeREL., NI)
DVW s TN 9 ON
PRINT 105. OsM DFW

1050FORMAT (// 2614 UNIVARIATE FeTESTS. 078 Go F39O.
1614 07W vs F6.C /// SON4 VARIABLE FeRATIB. 6X. IMP~)

DO 110 ~J a i*NO
110 S 4 S * S(I#J)002 0 0(j)

CC * T(I)**2 /TN



P • ((B o CC) * DFW) 0 ((Ott) B) G GM)
P u PRBF(GMs 07W# F)

E 115 PRINT 120# 1* F, P
120 FORMAT (/ 16. 712.4# FI104)

CALL PRTS (S# NV# NG# 6HO MEAN* NJ)
IF (KY #EO, 0) GO TO 5
REWIND 2 * NT * TN
00 130 1 a NT
READ (2) I•D (X(J)* J a u*NV)

DO 125 J I*N1e
125 Y(J) 9 SCPF(X, A, 1t js NV# NI)
130 CALL SUBS (Y NF, 2HDS, IND)

GO TO 5 6 RETURN
END



SUJBROUTINE SDZSCRIM lI
ODIMENSION A(70*70)* W(70#70)o C(70#70)t S(70*25)o T(70)o
1 V(70)0 X(70)0 Y(70), Z(701o 0(70)t G(25), KF(16)s KH(15)

DIMENSION B(70,70)sCC(?0s70)
NI v 70 0 N2 a 25

5CALLI CCDS (KV, NVo NO, KW. KTo KEY)
CALL INPUT (IDs Xp 0. Kr, NV)
DO t0 I a ,NV
DO 10 J a !,NV
CtIpJ) a 0.00

10 W(!,J) 0 0.00
IF (XT .01. 0) REWIND 2
DO 35 M a IoNG
READ 15# No KM

15 FORMAT (15# 15A5)
PRINT 20o Me N, KM

20 FORMAT (/ 6H4 GROUPp 12s IS* 10H4 SUBJECTS*, 3K 5iA5)
O(M) a N
00 25 I * 1NV
S(IsM) '0.0

DO 25 J aIoNV
25 A(IJ) 0 000

DO 30 I a J#N
CALL. INPUT (ID. X0 N + M 1000. XV, NV)
IF (KT 9OT# 0) WRITE (2) T0o (X(~J).j 4 IaNY)
DO030 J a ,V
S(JoM) * SNOJM) + X(J)
De 30 K aJANY

30 A(JPK) a A(J*K) # X(J) *X(K)
DO 35 I a 1,NV
DO 35 i s INV
C(IoJ) P C(IsJ) + A(IsJl

35 W(IpJ) 4 W(IJ) 4 (A(IJ) *S(I*M) S(J#M GMf))
TN s SUMF(G, is NO, N2)
DO 4o I. a tNV
1(1) *SUMF(So *Is NO, NI) e TN

40 GmI *CClin!
DO 45.1 alNV
00 45j v INV
C(IpJ) v CO# / TN * (I) * T(J)
C(JI) C(I*J)
A(I,.J) *C(Ioj) *TN *W(IJ)

45W(JoI) *W(IpI)
CALL INVS (NV, We Xp Yp Zo NI)
DO 55 I a 1,NV
0050 alu

50 X(J) a W(IsJ)
De 55-J * lNV

55 W(I*J) *SCPF(Xo A* to J* NV, Ni)
NF 0 MIN0(NG s 1o NV)
CALL. ACYS (NV, NV, 0.0s We As Vs X, Yo La NJ)
DO 60 'J l* NF
E * to0 /SQRTV(J))
DO 6o I * INY

60 AlIj) * A(I;,j) * E
IF (KW AEgo 1) CALL PCDS (As NV, NV, 5140 WTSo NI)
IF (KW- sEQ. I) CALL PRTS (A. NVa NV, 5,40 WTS* NI)
D0 65-1 s 1aNV



65 X(I) *SORT(C(III)l
CALL. 4AXS (C; A, WS NVO NV, NV# NJ)
D0 70 1 a eNF

y0 Y(I) v SQRT(SCPF(A* Wo to to NVi NI))
DO875 1 * 1,NV
Do75 1i a jpNF

75C(Isi) 0 W(I,.j) / (X) *Y(4))
YR R SUMF(V, I* NF, Ni)
XL R1*0
DO 80 1 a 1sNF
X1.) 0 V(I) / YR 0 100.00

80 XL * XL 0 (190 / (too 4 Vt!)) *VNsNV*GNaNO*GMs0NwleO
SS a tORT((VN4*2 0 GM..2 a 4.0) /(VNO42 *GM002's 5.0))
YY P XLO**(1.0 SS)
FA 9VN *GM
PB v ((N e 1.0) *(VN *ON) /2.0) *SS * VN O M *2.0) /2.0

F a (FS * (1.0 e YY)) /(YY F A)
P a PRBF(FA* FBp F)
PRINT 85a XLo VA, FB, F, P

85OFORMAT (// 25HW ~ILICS LAMBDA s, F10*3 IM 7$ eV. so F5.0,

14H AND# F700 /! low FeRAT70 a, F8e3, 5X, 3HP so F7*4) Z

OF * VN *ON
CC v TN OF~ / 2.0
DO 90 1 * NF
CS * CC * ALOG(1900 V!))
OF 9 OF 2.0
P a PR8F(DF* IDO0vC* CS / OF)

90 PRINT 95p Is X(I)a -Ss OF, P

950FORMAT (/ 5HOROOTo j?, FIOv2o 14H PCT. VARIANCE I

113H CHI4SQUARE *o FI0.3o 5K, 614D@F. as P5.0, SX, 3MP as P7.4)

DO 100 1. a lNV
T(I) a TUl) * TND00 ::::i00~ 4P 8N8EI. NI)
CALL AXBS (S A, Wo sNOi NF, NV, NI)

CALL PRYS (14, NO*, NFP 5WCENT., NI)

OFW aTN G N
PRINT 105p GM, DFW

10OSOVRMAT (126Ki UNIVARIATE F9TESTS. 078 so F3.0,

16$ DFW Vj 6.0 /// 18H VARIABLE FvRATIO* 6xp imp)
DO JII I a iNV
B 060
DO I11J04 iNO

1108 5 B + S(100402 G (4)
CC *T(I)**2 / N

- u(( *CC) D FW,% / 1(0(f) Lk) *GM)
P *pRSF(Gmo DFWp F)

115 PRINT 120o I* 1ýp P
120 FORMAT (/ 16, F%2*4, FlO.*)

CALL PRTS ($a NV* NGP 6140 MEAN, NJ)
IF (Xv *EG* 0) G0 TO 5
REWIND 2 9 NT TN
0O 130 1IONY
READ (2) IDP (X(,Jlo J 1 lNY)
Do %25 J I* iN

125P Yt.I) o SCPP{Xo A, j, 4 NV# N)

-130 
CALL SUBS (Y..P4F, 2141, 10# NIS)
05 To 5 g RETURN
END



Subroutine DMG

This 'dispersion matrix generator' subroutine is based on the RSPACE

program of Cooley and Iohntz which requires the input of the discriminant

function weights, vectors of groun means and group dispersion matrices, and

outputs centroids of the groups and dispersion of groups in reduced space.

As our DISCRIM program produces cantroids, the subroutine is necessary

for the calculation of the reduced space dispersion matrices only.

The DWTS are input to the su--outine in the call using the variable A,

the original space matrices are read within the subroutine from the rewound

S cch tape 1.

"The r x r dispersion matrix DD in the discriminant space for group g

may be obtained by pre- and post-multiplying the test space dispersion ma-

trix D for the group g by the matrix V containing the discriminant functiong

(weights) vectors as follows:

1
DD =V D *V: r).9 r, , r g re, m."V

C -
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SU3R8UYINE DmG(Va NVA N, KG# NO)
DIMENSION Y'(NDPN), D(7OiC)p OMAT(70,'O)p ODMATC?0#70)
DIMENSM5 VtNLDN)o 0000s3)o OMAT(30#30)*DDMAT(30#30)
PRINT 5j,~4V,?VKG*ND

!ýO F5RF-AT (10Xo6110)
REWIND I
0o a u1,#NV

2 PR~INTi 7,(V(Ipj)&Jgi#N)
DO 23 Lxi*KG

C PRINT~ 13x FIIILDT*
J3 FORMAT (iox,. DISPERSION MATRIXS*ITALDA)

19 READ 11) (D(,,J)#J*1aNV)
7 PORMAT (IOX010F1094)

DO 20 lvtCN
DO 20 JRIPNV
DMATt!,Jeo.ov
DO 20 Kua#NV

20 DhIAT('&,4) s DMAY(IoJ) *(V(K#I)*0(Kpj))
DO 21 tvIeN
DO 21 J'1sN
ODMATt jeJ) '0.0
DO 21 Kv1.NV

21 DDMAT(I*Jl 0 DDMAT(iaj) *(DMAT(I#K)*V(KJ))
PRI!T ?22
CALL, PCDS(DDMATpN#Ns5H DMa2pNO)
Dd 60 If1.N

60 PRINT 7plDDMAT(?,pJ)s*JS1,N)
22 FORMAT(10X#, DISPERAION MATRIX OF REDUCED SPACE*)
P3 CeNltNUE

REWIND 1

RETURN 4 E16D

IA



E CLASSID - TPCLASS

The classification routines described by Cooley and Lohmes in Chapter

seven of their book "Multivariate Procedures for the Behavioral Sciences"

from the basis for the classification of sleep stages in the programs CLASSID

and TPCLASS. The CLASSID program is a direct modification of the CLASSIF

routine. The modified version is compatible with the format of the training set

data produced for the sleep study and produces a summary of the classification

results for each group rather than the output of a record by record classification

as does CLASSIF.

The program TPCLASS is a further extension of this probability classifi-

cation system, taking as data input, a tape of unordered, non grouped sleep

measures. The TPCLASS program produces a plotting of the probability classi-

fied scores versus the time of each data record. It also provides an accounting

of the probability classified score as comnpared with the manually classified

stage which is available on the data tape used.

In both programs the subroutine MATINV is that of Cooley and Lohmes,

a matrix inversion and determinant calculation by the Gauss-lordan Method

described in Chapter nine co the above mentioned wovk.



PRCGRAM CLASSID(IN:IUT.OUTPUTTAPE1DTAPE2DPUNCH)

C As TITLE *o 12A6
C So NO GROUPS*NO VAR!ABLES#FIRST GRP NOLAST GRP NO $12
C C- NO SUBJECTS IN EACH GROUP a* 20F~o0
c Do D. WEIGHTS a- FORMAT 1005
C LE CENTROIDS
C 1,~ DISPERSI6N MATRICES
C 0. FORMAT OF DATA TO DE CLASSIFIES -- 12A6
C He DATA WITH GROUP DIVIDER CARDS v- 2r5 (NO IN GRP ,NO OF GRP)

DIMENSION V(5Q#20)ACENT(20,20), 00(50.50). D(20,~o20o)*RATIO(2C)*
ION(20). X(50), DISC(20)o DIF(20)p CHl(20),CHI30(20)p PIRO0)
INTEGER F;IT(24) *XID(l)

%lOH(F5#3#1X)pIQH%(FJ,3*) #10141N 012)
DI'ENSION JEAMEC12)

1000 FORMAT i1012)
1001 FORMAT (20F4*0)
1Q02 FORMAT (SE14#71
1003 FORMAT (12A0)

1005 FORMAT (10Xs7E10*7)
1010 FORMAT(IXA12A6)

5000 READ 1003. )NAME SO
IFUINAME~1,CtEsINAME(2)l TO
PRINT 1010PIP4AME
KNT a0
REWIND I
REWIND 2A
READ 1000. KG. MgNA, NZ
N 0 MIN0(0.Jv1,M)
ENCODE (1O#?2d6(3))KG

2 FORMAT (12p84
PRINT 3#KG

3 FORMAT (l0Xs*KOD o§110)

C VECTOR LISTING NO SL.jJJCTS IN EACH GROUP

PRINT 1015
1010 FeRMAT(MX*0 NUMBER OF SUBJECTS IN EACH GROUPO) ~

PRINT 1O05,(GN(tN),NN9s1KrG)
C MATRIX OF D WEIGHTS

DO012! 1 $%m
12 READ 1005s iV(I*4)s Jsi#jN)

C MATRIX Or CENTROIDS
DO 14 K. 1,KG

It RE-D 1005s (CEN'TtI#K)s I *N Ae

RMA 1005. (CENT(jjK)sKSi*KG)
C DISPERS:ON MATRIX

MO 20 Ke 1,KG
DO 1 1aI*~N

16 READ 1005s (00(Ie800 julN
CALL MATINVe'DGoN#Bp 0a DETERM
00 As IPI*N
DO is Jvl*N

14 D(loj*K) 9 DG(j#J)
90 RATIO (K) a ON(K)/ $QRTF (DETERM)

PRINT 495 p(RATIO(Kl*K.IKG)
49S FORMAT :IX,* RATIOeK) v-I~24/0l#

READ 1003*.FMT(?I~jIg112 )



DID 200 LLs1,KG
READ 202p NSLBNG#NAGRP

202 FO8RMAT (315)
PRINT 203,NAGRPNSUBNG

203 FORMAT(lHIPOGROUP * jS NUMBER SUBJECTS # 15)
DO 303 MMGNAPNZ

303 KTAG(MM)o MM
PRINT 304j,'TAeiMM)#MMsNA#NZ)

304 FORMAT(7x*.G~eUP*#lXsl6(!3s3X))
PRINT 305

305 FORMAT(lxa* ID COUNT*)
DO 201 Is 1&16

201 KLASS(I) a 0
00 300 I(K31sNSUBNG
RE:AD FMT ,X!D#CX(!), IslaM)
(NT a KNT + 1
DO 24 J~ilPN
DISCOJ) a 090
DO a34 Isl#M

2" DISCOJ) a OISCUJ)* (X(I)oV(,jj))
DO 31 K.1,,KG
00 28 Is1DN

00 30 .JG1N
CHI(J) a 0.0
00 30 161*N

30 CmI(j) aCHj(j)+(DIF(I)*D(!,JsK))

DO 31 Is1.N
31 C.HISO(Ki v '~4ISOCK) # (DIF(1)*CHI(1))

C WRITE (1) A~T#XID~lCHIS0(I)sIv1,KG)

33 P2 a *0P'~~

P1(K) a RATIO(K) * SXPF'.CHjS0(K)/2.0)

DO 36 I(b1,KG
36 PReBCK) a P1(K)/P2

TOP *PROBCI

KEEP I
DO 50 1* 1.KG
IF'(PRaB8(I)*4ToTOP)GO TO 50
KEEP
Top *pRaoB~)

50 CONTINUE
KEEP o 'ýEEP *(NA-1)
KLASS( KEEP) a KLASS(KEEP) #

PRINT I6pXIDKNT#(PR08tI)#j4 .:G)sTDP#KEEP
300 CONTINUE

PRINT 800#K4ASS(NAGRP)
8Q0 FORMAT (IOXp*KL.ASS(NAGR-, *a* 15)

PCTCOR v (KLASS(NAGRP)*tl'0aC)/NSUBNG
PRN'T 70,PCTCOR

70 FORMAT(I02CPERCENT CJiRXECTLY CLASSIFIED r1 ~005/1
200 CONTINUE

GO TO 5000
CAL4 EXIT S END
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SUBROUTINE MATINV:A*N*S.M*DETERM)
DIMENSION IPVT5)ASP0i(Ol*NE(02*IO(0
COMMON PVOT*INDEX*IPIVST
EQUIVALENCEI IRS W,#JROW) ( ICOLUMPJCeOLUM), (AMAXr* tSWAP)
DETERM 4 to0

15 DO 20 ~Jq1,N

20 IRIOW.4)0
90 DCOL5U0Ms*

40 AMAXw*h9gK

105 0CONTINUEj

110 IF(PIV9T(:CKu),IPIVOT(IOLUM)
C 0 INTECIANSF E RXOWSS TO PUT PIV lOT LENTON IOA
130 I7(TOW* IOJM14,6,*
9*0 IE¶ERMS.DTR

170 AMAIROWDL)AICLM)
200 A(CONTIUE.~S
205 I7eM)260E26D

2150 D0 250 6@1&N
220 SWAP*B(IReW*L)
270 A(IROW#L)OS(ICeLUM#6)
200 Bi ICOLUM1L.)vSWAP

220 SWNPEK(I,1),IRO

270 INDVEXtIP210ICOLUM
310 PIVOT(t)sACICOLUM,?COLUM)
320 DETtRlmsOETERM*PIVOTUI)

C DIVIDE PIVOT ROW By PIVOT ELEMENT
330 A(ICOLUMsICOLUM)G1.0
340 D0 350 LoIN
350 A(ICOLUML)SAtICOLUMgL)/PtVOT~t)
355 Ir(M)3a0D380*360
360 DO 370 4*tm
370 S(JCeLUML)S8(?C0LUML)/PIVOT(I)

C REDUCE NON.PV97 ROWS
380 DO 550 L1IvpN
390 IF(LI*ICO6UM)40e5b0*4O00
400 TIA(LIICOLUM)
420 A(L1DICeLUM)sO0s

430 DO 450 LsI.N
450 A(L%*L)vA(Lt&L)*A(IC5LUM*L)*T
435 IF(MSSODSSO,*460
460 Do 500 I6018M
500 &(Ll*L)95(L1l).oBflCOLUM#L)*T
530 CONTINUE

C INTERCIKANGE COLUMN$
690 DO 710 1* N

*610 Lgk*1*I
620 IF(INDEX(Le1)uINDEX(Lt))630s71OD*30

75:



630 JRf0W.!tNEX(Le1,)
64.0 JCeLUM.!NDE~((L*2)
650 oe 706 Kmj*NI 660 SWAPsA(KCJR5w)
670O ACK*,IROW)*A(KjjCUM)I 700 AIKD#JC9LUM)vSWAP
705 CINT!NUE
710 CONTINUE~
74.0 RETURN

END



I ROGRAM TPCLSI4INPUTOUTPUT.TAPE1.PUNCI4)
CCCCCC(
cCccCC
C DATA CARDS. AoKG#M (312)
C Be GN4KG) e.(20IF4#0)
C Ct DW;S(V(I.j)) (1OX,6Fl0*di)
C Do CENTReIDS (CENT(I#K)) (10X#6F10s4)
C EaD MAT(DG4I#JE) (IOX#7710.4)
C Fe NV ALSO TITLE (I5*6A10)
C Go LIST OF VARIABLES (2X#2013)
c~ccCcc

.OmmONip/~PvmIo(300),NAME(4),TPS(300),X(300)
OIMENSION TIMES(6),V(22),SCORE(200),TPSTG(200).TAGREE(200),

IL.VAR(22) ,XX(l50)sZ(ll)
R~EAL MV(33)
ASSIGN 58 TO NNN
CALL XMIT(NNN)
CALL SONPLT(4#PLeT *10.0.00050)

1000 KKK a0
PRINT 1

I rORMAT (1q41)
CALL CLASS(MVSCORE(l).1I#KKK)

9 CONTINUE
IEFs a 9KNT a
EUM 0 090

C NUMBER VARtABLES TO BE IJSED (I5) --AN7 TITLE YOU WISH
READ 2#NVs(NAME(I),I.1.6)

2 FORMAT I1EI4#GA10)
PRINT 2#NV#(NAME(0I),Isp6)

6 FORMAT(IOX**SEOUENCE OF VARIABLES TO BE USED*)
READ 5#(LVAR(I~sIf1,NV)

5 FORMAT (Zx,2013)
PRINT 6
PRINT 5s(LVAR(I)#131,NV)

70 N 0 0
PAJCH4 300#NAME

300 FORMAT(4AIQ)
PRINeT 7

7 r@RMAI(IMI#1X,.FILE BEGINS WITi4 THIS RECORD*)
50 CONTINUE

READ (1) NT#TIMES#STAGE#AGRNEE*V aDeMEGA*TAUPZ
IF(ENOPILt 1) 30.21

11 IF(u*EQol0 PRINT It STAGEsAGREE*V P4
It FORMAT(1Xo F590. A15#2X#9PE9IODS*#

I2F1Q.3#9F390/ ?GX,.RATES.,2F10.3.9P3.0,/1XI1F10.4)

I(NT aKNT 01
DO 20 Lv1,NV
KEEP OLVARtL)

20 MV(L) *VtKEEX')
00 I1 L toll1
XK s L *9

J1 MV(KK1 Z(L)
X(XNT) S(V(Wl/000#0)*l2&i*0 SUM
XX(N) v XIKNT)
SUM * X(XNT)
SCORE(N).0.0
CALL CLASS(MV*8CORE1N)#2,KKK)



TPSTO (N) *STAGE *TAGREE(N) *AGREE
TPS(KMT) uSTAOE
VMIO(KNT) *SCORE(N)
GO TO 50

30 1EF a !EV4I
NRIGHT v 0
DO 31 J JolN
IF(SCORE7J)*EQ*TP$YG(1I)) NRIGI4T *NRIGI4T.1
NCHK a lOW
IF(CSCRE(~JNCTPSTG(J)) NCHI( a 10H MISSED

31 CONTINUE
32 FORMAT(1Xg13e2F10e0,2(5XA1O),SXeEI3.3)

RIGHT UNRISHT s COUNT v N I
PERCOR *(RIONT/COUNT)O100.0
PRINT 34, IEFPERCOR

34 FORMAT(IoX,*FlLE **IZ.* PERCENT CORRECT o* F5o2)
PUNCH 301. IEF*PERCOR

301 FeRMAT(IXP*FILE*#IS$Flo*3)

Ge TWO(780#70#90),EV
CALL PICTURE(KNT)
I'(IEF*EQ*#) 0O TO 60
SUM s0*001
KNT . 0 S 0O TO 701

5a PRINT 57, IEF.N
57 FeRMAT(1X**XMIT IN CONTRBLVILE**15#* RECeRO.,I5)

PRINT 12#STAGE*AGREE*V*Z
STOP

60 39 TO 1000

END

78I
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SUBROUTINE CLASS (XPjCKpIGO*KNT)
DIMENSION V(50#20)o CENTi20.2Q)# DG150#50)p U(90#20#20),RATOe(aO~i
1GN(20)i x(50)p DISC(20)o fGIF(20)p CHI(2o),3(50)sV.ASS(2Q),.KTA0f20)
2#CHISO(20) 8PReB(20)*PI(20)
INTEOER FMT(24)

1000 FORMAT (312)
1001 FORMAT (20F490)
1002 FORMAT (5E14*7)
1003 FeRM4T (12A6)
1004 F'ORMAT 1IOX&EI1.7)
41O05 FORMAT (lOX#7F10.4)

IF I!O.tEge1) 08 7e 100
10 KNT a KNY* 1

DO 24 Jvl*N

24DISC(J) sa DISC(.J)+ (X(I)*V(I~J))

D0 31 Kvj#KG
DO 28 101#N

28 01F(!) 0 DISC(l)-CENT(I*K)
00 30 JioleN
CHIf~j) 4 Q00

30 CHI~.I) * CHI4IJ)#(DlF(I)*(DttJeK))
Ct4IS~tK) v 0.0
DO 31 tfheN

31 Ct4ISM() 9 CI4ISO(K) * (0!F(I)OCHI(1))
3N P2 9 0.00

DO 34 Kvj*KG
ZAVE 6 CXPF(wCHISQ(K)/2*0)

P1(K) aRATIO (K) *ZAVE

34 PZ a P2l *PI(K)
00 36 Kv1.KG36 PROB(K) a P1(K)/PZ
TOP a MROMf
KEEP 9 1
0f) go Io 1.,KG
IF(PROB(I)*LT.TOP)SO TO 50
KEEP *1 * TOP *PROWf)

50 CORTINUE
PICK. i EEP I
RETURN

60 PICK 9 0.0
PRIMT 61*XNTPP 

JB 2 ,135
61 FORMAT (lOXe*EPeCHN6 9*14# PZ0#D35

RETURN
100 KNT 90

READ 1000s KG1 M *Nl

101 N 0MINO(KG*1,M)
PRINT 102*KG*M#NI

102 Y'ORMAT(SX4312)
REWIND I

C VZC79R LISTING NO SUBJECTS IN EACH GOUP
RF'AO l00l,(GN(NN)#NNOI#KG)
PRINT 1L005#(GNlNN).pNNUISKG)

C MATRIX @F 0 WEIGHTS
De i 1.,1

it uACAD 1005*,V(l#J)p JoseN)



* C MATRIX OF CElTReIDS

14 READ 1005s (CENT(I.I()o I * uN)
C DISPERSION MATRIX

00 20 Kv .K0
06 016 1 a .N

16READ 1009s (0DG1aj)s JvjiN)
CALIý MATINV(DG#N*Bp 0, DETERM )
PRINT 301#0ETERM

301 FORMiAT (20XPODETERMI OE13*5)
17 CONTINUEIi DO It I'1.N

20 RATIO (K) 3 NIK)/ SQRTF (DETKRM)

PRINT 495 *(RATIO(K),*.1,toG)
495 FaRMAT (IXP* RATIOCK) **l0E12*4/10E12*4)

RETURN
80 CALL. ENDPLPT S STOP

END
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Subroutine Picture

Loops 1 & 2 set up a matrix* showing how the computer score of each

record compares with the manual scores read from the tape.

VMID is computer score, TPS Is manual score.

Loop 8 punches (and prints) this matrix of comparison for use in cor-

relation program Correls.

Loop 10 converts the computer score to an appropriate value for plotting

i.e. stage 0 becomes 5, 1 is 4, 2 is 3, 3 is 2, 4 is 1, and S is 0.

Stage 5 or REM scores are converted to a dotted line betweeis

stages 0 and 1.

The statements from 10 on perform the plotting according to the plot

routines available for the CDC 6600 computer at IT at Austin.

* This is a very compact way of saving two scores for each record of

data processed in X(I,J) where X is count of the no of records manuall,

classified as I, which were computer classified as J.

83A



SUBROUTINE PICTURE (NP)2
COIMMSN/PP/VMIO(300)INAME(4 ),TPS(300),X(300)
D!MENSION Y(300)pIPT(300)#lSET(6#6)
DO I L 9 IP6

I ISET(L*J a 0
400 2 L 9 1,NP
J 0TPS(U S~ *K VMIDWL I1

I(.EQ*l0) 00 TO 2
ISETNA,) a ISET(4,K) I

2 CONTINUE
PRINT 1t
PRINT 76

76 F~ORMAT tU5Xo#MANUALLY SCORED STAGE*)
PRINT 77

77 F'ORMAT(I0X** 0 1 2 3 4 5 0)

PUNCH ,99(ISET(K,4)#Kw1,6)
99FORMAT(613)
8 PRINT 9#J4,(ISET(K,4)sK n 1*6)
9 FORMAT(4X#II#5X#6(I4*IX))

PRINT 11

08 5 K a 1,NP
Y(I() i 4.2 (. :PT(K) '3

00 t a IsNP)N

VMD() AS(MX(NPO)05 500.

VMI(J)w 40VSID(NP*2) .
10CNINUE(XVIP10
S0P a4'P/30*

7 ORCAL.LT(F5#)2.42,1PT(J)
PEACOE * 0.0 s ICODE)NP

00~NPI 80 04 S 1.7(P*)
CALL SYMBO(0.0,D*PLIACE0.4..00CO

80 CALLPLT(VrIZ6ZNPUJ
PLACE a 0.0 s ICODE 0 *1

CALL SYM8OL~o~PLACEd0o#I.4#9#o0.0.COEK)
PLACE s PLACE *0.185
ICOE 0 ICODE - I

80 CONTINUE
PLACE a .625 0 MODEO v 47

PLAC 9~ PLC 01

CALL SYMBOLb(.1*4,PLACEO*105,INTEQ.0O,'1o)



PLACE 6 PLACE *.695 S INTEG INTEG a I
91 CONTINUE

CALL SYIMS8L(ef'o6g1*55e0e14g11NSLEEP STAGE*9O.O.11)I CALL SYMBOL(t.Oe1oeeO.O14eIXMAXao90o,1o,
CALL SyMBOL4%400el*O#O*14pINP *0*0*410)
CALL SYMB9L(0eSocte50.Oe14,NAMEOO,40)
CALL PLI(O*O*0O*.9g9)

PRINT 20*NP*VM~ItNP)
PO FeRMAT (lOX**PLOT COMPLETED.WNe9P@INTS***1&** LAST PT.*-*F04

RETVR 0 EN



Program Correls

DO 60 - sto'. in matrix CODE(4,4) the cost valu,- listed in XCODE(16) of the

data statement. These valuies indicate the cost of error of the computer

classification versus the manual classification.

100 thru DO 3 read in a classification matrix for one half night of data as pre-

pared by program Tpclass.

DO 6 DO 7 DO 8 reduce the 6 x 6 Tpclass MATRIX to a 4 x 4 matrix by adding

stage 1 to stage SREM and stage 3 -to stage 4.

DO 50 Evaluate the E i ,re score matrix by multiplying each value of the score

matrix by the corresponding value of the cost matrix. Accumulate these

products in the variable SUM. If e'very decision between sleep and

awake were incoaect this sum would be equal to the number of data

records classified.

DO 10 - 20 and 30 resort the 4 x 4 computer 7s manual score matrix into two

vectors of KNT length where KNT is no. of data records classified - store

vectors on scratch tape 1 to be read back for intercorrelation analysis.

CALL CORSS (KNT, NV) to perform the Intercorrelation anaiysis. TI'.,. routine is

a modification of Veldmans' CORS subroutine to the extent that the

data is input through the use of the scratch tape 1.

Print 50 - Print 53 - print sum as total error cost. Calculate and print error cost

per data record classified.

DO 81 - Print 82 - The total of the records on the diagoval of the 4 x 4 score matrix

represent correct classifcation. The percentage of these correct records

versus the total number classified is calculated ana output.



PROGRtAM CORRELgi INPUTOUTPUT*TAPEI)
DIMENSION XM(6#6),ITITLE(4) *CODE(4*4)
DIMENSION XCODE(16)
DIMENSION NAME(S

1l...50,.25,0.O/oe6/ol~ols@O*#59*#*50,0

DO 60 to*
019 60 wJ* .

CeDE(I*J) s XCtOE(K)
60 CONTINUE

DO 61K a 1*4
61 PRINT. 52*(CODE(KL,,Lv1.4)
52 FOR"ATC1X&4F5.2)

NV v 2
100 READ l#171LE^#PCI.ITtTLE#171LE2#PC2

I FeRMAT(1Xos, 5.V1*FQ.0/4A10/5#SX. 15710.)
IF(ITITLEW&)EQ91TITLE2))CALL EXIT
PRINT 2*ITITL.E#IFILEIIFILE2pPCIPC2

2 7SRMAT(1Hl#1Xa4A10s# FILES*s2j5,2F10*3)
REWIND I
DS 3 161#6
READ 4#(XM(I,4)fJv1,6)

4 PORMAT(07390)
3 PRINT 5*CXM(If)JI*Jwtp)
5 FeRMAT(1X#6F5#0;

DO 6 1 9 1,6
XM(!02) a XMCIs2)#XM(I#6)

6 Xfl(t*4) a XM(I,4)4XM(I,5)
DO 7 1J e 1.4
XM(Z#J) a XMCZ*J) # XM(6*J)

7 XM(40ji a XM(&,,J) # XM(5,J)
PRINT 70

70 FORMAT (lX#//sl X. REDUCED MATRIX.)
DO a K 0 1*4

g PRINT 5#fXIIIK#L)#Lv1,4)
SUM 9 0.0
00 50 IV 1.4

50 SUM aSUM~ + XM(I*J)*COOE(IJl)
KNY a 0
DO t0 I a 1*4
CS 0 1
DO 20 1 9 1#4
SS j
L *XM1.*J)
IP(L.EQ.0)GO TO 20
DO 30 KC s 1eL
KNT 9 KNT # I
WRITE (1) KNT..CS#SS

C PRtN7 31*KNT#CS*SS
31 FORMAT(IX, 15#27590)
3D CONTINUE
20 CbNTINUf
10 CONTINUE

= REWIND 1
CALL CORSS(KNTNV)
PRINT gt,3UM #KNT



L51 F0RMATC1OX*//,1OX,*ERROR COST **F10.?.# FOR *IS*# DATA POINTS*)
COUNT v KNT
CP w SUM / COUNT
PRINT MA~P

53 FORMAT(IOX#*eR *g0l0#6*0 PER PONT*)

DSUM a 0.00F:NSOjAOA.

EDOb' 1*
$I OUM 9OSUM+ XMIs3

PRINT600SU

60 FRMA~l0;//s0Xs692* SW OFPOITS O 'J~deAL*

PDSUM UM/CUNT)100I

PRINT 2PDSI

82 FRMA(10:,,*OR OF104*0 ERCNT O TH DIAONA*/I

GOT 0

END8


